
Robot Navigation by Conditional Sequencing
(s~lbmiile(i to the 199/ IEEE Confcrcncc on Robotics and Automation)

Emnn Gat
California Institute of Technology

Department of Mechanical Engineering
Jet Propulsion Laboratory
gat@robotics.jpl. nasa.gov

Greg Dorais
lJnivcrsity of Michigan

Dcparlmcnt of Compulcr Scicncc

ABSTRACT
Wc investigate the application of conditional

sequencing to robot navigation. Initial cxpcrimcntal
resulls indicate that very robust navigation can bc
achicvcd by layering a conditional scqucnccr on top
of a set of simple scnsorimotor behaviors. The
approach is uniquely flexible, permitting very
complex tasks to bc programmed reliably in very
short periods of time. The tcchniquc was used in the
rcccnt American Association of Artificial
Intclligcncc mobile robot contest. All of the
contest-specific code was written in lhrcc tiays by a
single programmer. The robot turned in the best
overall performance of any entry. ln addition, wc
prcscnl the results of over ninety formal
cxpcrimcnlal runs performed un(icr a varicly of
circumstances.

1. Inhoduciion

In earlier work wc intro(iuccci a tcchniquc for
mobile robol navigation based on conditional
sequencing [Gat91]. At that time wc prcscntcd
anccdolal evidcncc to supporl the claim that
conditional sequencing is an cffcctivc tcchniquc for
rnobilc robot navigation. In this paper wc dcscribc
ongoing cxpcrirncntal studies of autonomous
navigation based on conditional sequencing.

Conditional sequencing (also called rcaclivc
plan execution) is an Artificial lntclligcncc software
technology for controlling autonomous systems in
unpredictable environments {Firby89,
McDcrmott93]. To dale, conditional sequencing
syslcms have shown great promise controlling
systems in complex simulated environments.
}Iowcvcr, the lcchniquc has not been cxtcnsivcly
app]icd to real robots. In this paper wc present
some iniliai investigations in this direction, as WCII
as some preliminary but very promising

experimental rcsultso To date wc have performed
over ninety formal cxpcrimcntal runs.

Informally, conditional sequencing is a
tcchniquc for getting a robot to follow instructions.
Conditional scqucnccs arc distinguished from the
more classical notion of a plan in that the
instructions are not ncccssariiy linear scqucnccs of
slcps. Instead, the execution of conditional scqucncc
is dcpcndcnt on the situation lhat unfolds during
execution, Conditional scqucnccs may include
constraints on situations which do not manifcsl
lhcmsclvcs untii run lime.

The foliowing is an informai example of a
conditional scqucncc:

To assemble a widget, locate Part
A and Part B and a l/2-inch screw.
lnscri Part A into the hole in Part
R and faslcn with the screw. Take
care not to over tighlcn the screw.
If Parl A dots not slide into lhc
hole easily, usc a piccc of
sandpaper to remove any
protruding bumps.

This is a set of instructions, but it is not a
linear scqucncc. For example, the instruction “take
care not 10 over lighten the screw” is not a step 10
bc performed afkv lhc prcccding onc (“fasten with
the screw”); il is a constraint to bc applied
simultaneously with the fastening operation. The
last instruction is an example of a contingency
procedure. It is normaiiy not performed al all, but
only in the case where something goes wrong,

Conditional scqucnccs work by invoking
lower-level scqucnccs, For example, locating Parts
A and B involves invoking a proccdurc for searching
for an object, which carries with it its own
constraints about where to search, and contingency
procedures about what to do if the search faiis (look
underneath things, for example). Robustness is

achicvcd by having a large number of contingency
procedures which can rccovcr from failures. Thus,
the systcm can bc made reliable even though failures
arc common provided that the failures arc made
cognizantly, that is, provided that the robot can
dctccl the failures.

Conditional sequencing has been applied
mostly to high-level task execution. In this paper
wc invcstigalc the applicability of the tcchniquc to
mobile robot navigation, The intuition behind this
approach is that robols can navigate by following
instructions similar to those that humans give to
guide others to unknown destinations. For example:

To get to the lab, go out the door,
follow the hallway to the left.
Turn right at the second corridor,
Go around the big planter in the
middle of the hall and turn at the
third door on the right. If the hall
is blocked, go around the other
way, or go back to lhc office and
ask for help,

This top-level scqucncc would bc cxJJandcd in
terms of procedures for following halls, turning
around corners, moving around obstacles, CIC. The
hierarchy bottoms out in primitive procedures which
arc simply scnsorimotor control laws that arc
cnginccrcd by h~nd.

Wc advocate bottom-up dcvclopmcnt, where
10W-1CVC1 primitives arc designed first and their
performance is empirically characterized and
debugged, By performing empirical verification of
primitives wc avoid the cxtrcmcly difficult problcm
of analyzing the interactions of the robot will] its
environment.

Scqucnccs arc then built on top of the
debugged primitives, This is similar to the
dcvclopmcnt rnclhodology advocated by Brooks in
his subsumption architecture [Brooks86] in which
complex behaviors arc built on top of simpler ones,
but it differs in the manner in which the layers
interact. In subsumption the layers interact by
arbitration: higher layers override lower ones and
seize control of the vchiclc’s actuators. la our
approach, higher layers provide input to the Iowcr
layers in order to paramctcri?.c their actions. Only
the lowest layer acmally controls the robot’s
actuators directly. More details on our architecture
and dcvclopmcnt methodology can bc found in
[Gat92]. There arc a number of rcscarchcrs pursuing
similar approaches including Conncll [Conncl191],
Arkin [Arkin90], and Bonnasso [Bonnasso92]. It is
interesting to compare our work with Simmons

[Simmons90] who advocates top-down dcvclopmcnt
rather than bottom-up.

2. The Robot

21 Hardware-

Our cxpcrimcnts were performed with 100%
off-the-shelf commercially available hardware. This
presents a unique opportunity to perform
indcpcndcnt verification of our cxpcrimcntal rcsulLs.
Our software can bc used without modification by
any rcscarchcr with the following hardware. (In fact,
wc used a pair of identical robots during the course
of the cxpcrimcnts, both using the same software.)

Each robot used in our cxpcrimcnts is a Real
World lntcrfacc (RWI) B12 base with an 8-inch
dcvclopmcnt cnclosurc. The B 12 is a 12-inch
diamclcr circular base with a three-wheel
synchrodrivc mobility mechanism. The robot is
thus capable of turning in place, and can travel along
any path (although paths with discontinuous
curvature require the robot to stop), The circular
shape, synchrodrivc, and the B 12’s robust design
make it a very convenient research platform.

The dcvclopmcnt cnclosurc, also from RWI,
houses a Gcspak MPL-4080 68000-based singlc-
board computer, a ring of twelve Polaroid ultrasonic
sensors, and a controller board for the sonars. On
top of lhc dcvclopmcnt cnclosurc sits an Apple
Macintosh Powcrbook. The connection bctwccn the
Macintosh and the rest of the robot is an RS-232
link, so a desktop Mac could also bc used with an
appropriate lcthcr or wirctcss serial link.

Wc made onc modification to our robot.
Llccausc the robot has twelve sonars, each of which
covers a 30-dcgrcc cone, there arc two different sonar
configurations to choose from. (See figure 1,) The
robot comes out of the box with a configuration
shown in figure la. Wc changed this to the
configuration shown in figure lb. Wc found that
having a sonar pointing at the major compass points
has some practical advantages when developing wall-
following and obstacle-avoidance algorithms. The
dcvclopmcnt cnclosurc is specifically designed to
allow this reconfiguration, It takes about five
minutes and requires no tools.

.

(a) (b)

Figure 1: Two alternative sonar
configurations. The central arrow
shows the robot’s direction of travel.

2.2 software

All dcvclopmcnt was done using Macintosh
Common Lisp version 2 running under syslcm 7.1.
Embedded in the Lisp cnvironmcnl is a custom
dcvclopmcnl systcm for the 68000 processor on the
robot. This systcm includes an assembler, an
operating systcm for the 68000, and a compiler for
the ALFA programming language [Gat91] which is
used to program primitive behaviors,

In the cxpcrimcnts dcscribcd in this paper
conditional sequencing was done using lwo different
syslcms. The first cxpcrimcnt (dcscribcd in scclion
3) used a simplified conditional scqucnccr
implcrncnlcd dircclly in Lisp using the Lisp
catch/lhrow construct. The second cxpcrimcnt
(section 4) was in~plcmcnted using Firby’s Rcaclivc
Action Package (RAP) systcm [Firby89], The RAP
systcm has rcccntly been rc-implcrncntcd in
Common Lisp, and is freely available for non-
commercial USC. Wc modified Firby’s systcm
slightly by adciing an intcrfacc to the robot, BoLh of
these systems will bc described in more detail in lhc
appropriate section.

Z,3 Prinlitive Rehavior$

Our dcvclopmcnt methodology begins with the
design of simple scnsorimotor behaviors which arc
used a building blocks for more complex activities.
In this case wc arc concerned with navigation in an
indoor environment where walls and doorways can
bc used as positional CUCS. The robot musl bc nblc
to deal with uncxpcctcd obstacles, but must not rely

too heavily on dead reckoning. Bccausc of rotational
drift, dead reckoning errors incrcasc faster than lhe
square of lhc distance traveled. Dead reckoning is
reliable only for distances of about five meters or
Icss.

For indoor environments wc usc three basic
behaviors: dead-reckoning to a position while
avoiding obstacles, following walls, and aligning to
walls. This rcpcrloirc is generic to many tasks, and
has not changed since wc began this work three
years ago, although wc have fine-tuned the
algorithms a bit since then.

The dead-reckoning behavior works as follows.
The robot turns towards the designated goal location
and begins to move forward. If the robol dctccxs an
obstacle some distance away il slows down and veers
away from the obstacle. If the robot dclccts an
obstacle nearby il stops and turns in onc direction
(chosen according to the location of the obstacle and
the goal) until it is able to move forward by a small
amount. This “directional Ialching” prevents the
robot from oscillating back and forth in a ncvcr-
cnding loop. The threshold distances for these two
behaviors arc dctcrmincd empirically.

Wall-following is performed by simply
scrvoing to onc of the side-looking sonars. The
algorithm contains a number of hacks to keep the
robot stable and to handle doors. The wall-
following algorithm also stop for obstacles.
(Reliably moving around obstacles while following
a wall is an unsolved problcm.) There is no
theoretical justification for the algorithm. In facl, it
can bc shown mathematically that the naive
algorithm ought to bc unstable. Ncvcrlhclcss, the
algorithm dots work in praclicc with high
reliability.

Wall alignment is done by scrvoing the robot’s
heading until Lwo adjacent sonars read the same
distance, Experimentally this simple algorithm
aligns the robot 10 smooth surfaces with an accuracy
of better than onc dcgrcc. Wall alignment is used to
correct for rotational drift brought about by slighl
misalignments in the robot’s wheels, The result is
dramatically improved dead-reckoning pcrforrnancc.

2.4 Cognizant Failure

There arc certainly better algorithms for
performing all of lhcsc functions than the ones just
dcscribcd. However, lhc point is not 10 develop
bullet-proof algorithms, but ralhcr to show that
conditional sequencing works. In fact, to test
conditional sequencing il is better that the primitive
behaviors not work perfectly bccausc we wish to
demonstrate that conditional sequcnccs can rccovcr

from failures, and thus produce reliable performance
even when the primitives arc unreliable.

In order to rccovcr from failures it is ncccssary
for the robot to bc able 10 dclccl failures when lhcy
occur. Failures which the robol can dctccl wc term
cognizanlfailures. To produce cognizant failure wc
augmcnl the primitive behaviors with monitoring
routines which check to sw that things arc working
propcrl y. These monitor routines vary from
situation to situation, but arc all fairly
straightforward.

The dead-reckoning monitor checks the robot’s
position to scc if it is outside of a bounding region.
It also imposes a time limit on reaching the
destination, The time limit and the size of the
bounding region arc parameters which can bc
changed by the scqucnccr, Dcfaul 1 values arc
computed according to the initial {Iislancc to the
goal,

The wall-following monitor checks the robot’s
heading to make sure that it is not turning faster
than cxpcclcd duc to rotational drift, 1(also makes
sure that the distance LO the wall is within an
cxpcctcd range, and that the robot is not stopped duc
to an obstacle.

The wall-alignment monitor checks that the
heading correction produced by wall alignment is not
greater than an cxpcacd threshold. It also imposes a
time limit on the al ignmcnt process.

The sequencing infrastructure allows ncw
monitors to bc defined by lhc programmer if dcsirui.

2.5 Basic Seauences

As an illustration of how conditional
sequencing works wc dcscribc a fcw basic IOW-ICVCI
scqucnccs which wc used in a number of our
cxpcrimcnls.

The dead-reckoning and wall-alignment
primitives can bc used to conslruct more robust
dead-reckoning and wall-a ligmncnt scqucnccs simply
by retrying the primitive if it fails. For an cxarnplc
of how this works consider the situation in figure 2.
The robot has to dead-reckon to a location which is
blocked by an obstacle. Since the robot has no
global map, and there arc no local indications of
which direction is prcfcrab]c for circumnavigating
the obstacle, the robot chooses a dircclion at
random, Suppose it dccidcs to go 10 the righl,
which happens to lead 10 an inefficient path. At
some point the robot monitor indicates a cognizant
failure when the robot movcs”oulsidc the bounds of
the monitor region. At lhis point, the scqucnccr
rcstarls lhc primilivc. The robot lurns 10 face the

goal, at which poinl lhc obstacle is on the robol’s
right, The robol thcrcforc veers away to its lcfl, and
eventually moves around the obstacle in the correct
direction.

of course, lhcrc are situations where [his
slratcgy fails. However, such high-level failures arc
also cognizant failures, and thus can be dealt with by
higher-level rccovcr procedures.

I
\oGoal

Robot

Monitor-region boudafy
—

Figure 2: A basic sequence.

A second example of a basic scqucncc is
following a wall past open doors. Normally an
open door causes the wall-following primitive to fail
cognizantly, since ihcrc is no longer a wall to
follow. If lhc robot needs to move past open doors
il simply invokes lhc dead-reckoning primitive to
move past the door, and then starts following the
wall again. This scqucncc requires its own monitor
10 make sure that it manages to find the wall on the
other side of the door. If it dots not, the robot must
first realign iL$clf to the wall before proceeding.

By building up successively more complex
rcpcrloircs of conditional scqucnccs wc have been
able to achicvc very complex goal-directed behavior,
as dcscribcd in lhc following sections.

3. Ixpcriment 1: The AAAI Robot
Contest

The hardware and computational infrastructure
dcscribcd above was used to program an entry for the
second American Association of Artificial
lnlclligcncc (AAAI) mobile robot contest. All of
the contcs[-spwific code was written in three days by
a single programmer. The robot turned in the best
overall performance of any entry in the events
Cntcrut.

The contcsl consisted of three events, of which
only the first two were cntcrcd. (’1’hc third cvcnl
involved manipulating large cardboar(i boxes which
our small robot was physically incapable of doing.)
The conlcst took place in a large arena made of
rcconfigurablc panels which were rearranged for the
various cvcnrs.

3,1 Seq~lencin~ lnfrastrwtme

The sequencing infrastructure used in lhcsc
cxpcrimcnts was a shnp]c conditional sequence
compiler implcmcnlcd dirccdy in Common Lisp
using the catch/throw facility of that language
[S1CC1C90].

For this simplified scqucnccr wc made the
assumption lhal scqucncc execution was nominally
linear exccpl when a cognizant failure occurred. Wc
therefore implcmcntcd as our basic sequencing
construct a macro called with- recovery-
procedures which has the following syntax:

(wi th - recovery-procedures
t imeou t ac t ion

(f a i l u r e - c o d e recovery-
procedure)

(f a i l u r e - c o d e recovery-
procedure)
. . .)

Monitor procedures signaled a failure by
calling a function called f a i 1 which took as an
argument a Failure code which indicated the lypc of
failure. This failure code was propagated upwards
through nested with-recovery-procedure
forms un[il onc was found which had a rccovcry
proccdurc for that failure code. The top-level
intcrprclcr had a global rccovcry proccdurc for all
faihrrc codes which turned all Lhc robot’s motors off.

On lop of this basic sequencing facility wc
implcmcntcd a number of additional facilities,
including linear and non-linear scqucnccs, state
machines, and a macro for rclrying a scqucncc a
variable number of limes.

3.2 Event 1: Rcar)e from the Office

The first cvcnl required the robot 10 explore a
mock-up office and find its way oul. The “office”
was a 4-by -6-mclcr space containing real office
furniture (but no carpeting), including a desk, some
chairs, a filing cabinet and a cabinet-bookshelf.
There were three “doors” in the office, consisting of
movable panels, Onc minulc into the contest onc of
the lhrcc doors, chosen al random by the ju(igcs, was

opened. The robot had to find the open door, go
through it, and then navigate an obstacle field to a
finish line some fifteen rnctcrs distant. The robot
had to slop within two meters of the finish line.
The robot was starred at a known orientation but at
an unknown randomly chosen location within the
Oft-lee.

The strategy used was the following. The
robot wandered randomly around the office for onc
minute (the time that the doors were guaranteed to
bc closed) while keeping track of its cxtrcmcs of x-y
positions, Using this data it computed x-y
positions that would guarantee that it was outside of
the office. It then began to try each door in turn
until it rcachcd a location outside of the office. It
then moved to the finish line using the dcad-
rcckoning primitive.

The robot was tested about a dozen times
during the preparation for the contest. It never
failed, During the contest the judges consistently
chose to open the door that happened to result in the
worst-case performance. Ncvcrlhclcss, the robot
placed second overall in this event.

On a whim, wc also implcmcntcd procedures
for entering and exiting the arena autonomously.
Bccausc all of the sequencing infrastructure was
already dcvclopcd all wc had to do was write a single
top-level scqucncc. This took about tcn minutes to
do. It was tested six times (including the two
official contcsl runs) and worked every time.

3,3 Event 2: Deliver the Coffeepot

The second event was much more complex.
The event took place in a 15-by-24-meter area which
had been partitioned into a maze of offices and
hallways, (SW figure 3.) There was no furniture
this time; inskad cardboard boxes were placed in the
arena to serve as obstacles. The robots were allowed
to have a priori information about the layout of the
offices and hallways, but not the locations of the
boxes (which could bc changed from run to run),

The objcctivc in thi$ contest was to find a
coffccpot which was locakxt somcwhcrc in the arena
and deliver it to a designated location, To
accommodate robots without any manipulation
hardware the robots were not required to actually
pick up the coffccpot; it was sufficient for the robot
to move near the coffccpot and indicate that it knew
lhat it had located the pot. The robot was told ahead
of time which quadrant the coffccpot was in, and the
location of the destination.

The robot was not told its initial location nor
it initial orientation, The robot thcrcforc had to

begin by self-localizing ilsclf to dctcrminc its
location in the map. ‘Ilis was done as follows.
The robot began by searching for a wall (in a
manner dcscribcd below). Once it found onc it
began following the wall while making a record of
the pattern of lcfl and right turns it was making. It
turns out that this pawcrn was unique for each of the
wall assemblies in the arena. TtIc robot was thus
able to dctcrminc its position after locating and
circumnavigating a wall asscmb]y.

Figure 3: The layout for experiment
2.

Once the robot had self-localized the rest of the
event was straightforward. The robot used a simple
path planner to plan a scqucncc of rooms to visit to
search for the coffccpot, which was located in room
C. Bccausc the robot knew the quadranl where the
coffccpot was located it only had 10 search three
rooms, It found the coffccpot in the second room,
(Acmally, since the robot had no sensors capable of
detecting the coffccpol il had to bc told that il was in
the same room.) The robot then moved directly to
the delivery dcslination, The robol’s general route

after self-localizing is shown in figure 3. This
depiction leaves out the avoidance maneuvers the
robot performed to avoid boxes. These were not
recorded at tic time.

This cxpcrimcnt was only performed once.
However, our robot was the only robot in the
contest to complctc this event. It also took a single
programmer lCSS than cightccn hours 10 program the
robot for this event.

4. Experiment 2: Trek to the Lab

The prcccding results, while encouraging,
rcprcscnt only anecdotal data, and is thus of limited
utility for drawing general conclusions about
conditional sequencing. In order to provide some
more rigorous data wc set out to perform an
cxpcrimcnt with a statistically significant ‘number of
trials,

The cnvironmcnl wc used was the hallways of
the building where wc work, a typical modern office
building consisting of a maze of orthogonal
hallways with doorways and random obstacles. We
wanted to show that the performance of the robot
improved in a prcdictablc, monotonic manner as
rccovcry procedures were added to scqucnccs as they
were being tested.

For these cxpcrimcnts wc used a different
conditional sequencing infrastructure. Instead of the
simplified systcm used in the previous cxpcrimcnts
wc used a slightly rnodificd version of Firby’s
Rcactivc Action Package (RAP) systcm. RAPs arc
a sophisticated conditional sequencing Ianguagc
whose details arc beyond the scope of this paper.
The systcm is dcscribcd in detail in [Firby89]. To
date, RAPs have been used to produce very
sophisticated behavior in simulated environments,
but have not been used on real robots, These
cxpcrimcnts bridge the gap bctwccn a sophisticated
AI rcactivc execution syslcm and robot hardware (cf.
[Cicorgcft%7]).

Wc chose as our initial benchmark task to
navigate from a particular office to the mail room
which was approximately tcn meters away on the
opposite side of the hallway. This turned out not to
bc a sufficiently difficult task. Wc performed thirty
trials with an inilial version of the software; all but
onc worked perfccdy.

As this left lildc room for improvement, wc
chose a more difficult task. This time wc
programmed the robot to navigate to our lab which
was halfway across the building, a distance of
approximately seventy meters involving about a
dozen turns.

We defined a succcss metric based on the
distance traveled before an unrccovcmblc failure, and
ran fifteen trials, adding rccovcry procedures as
problems occurred. By the tenth trial the robot was
consistcndy completing lhc run, (See figure 4,)

TIM 8

Figure 4: Fifteen consecutive runs
from the office to the lab.

Wc once again raised our sights and
programmed lhc robol to return from ihc lab to the
office, The total lcnglh of the run was now nearly
150 meters, Wc ran forly-seven cxpcrimcnls, again
making adding rccovcry procedures as problems
occurred. The rcsulls are shown in figure 5. The
results arc not as consistent as lhc previous
cxpcrimcnt, but a clear upward trend in performance
can bc seen.

Trial II

Figure 5: Forty-seven consecutive
runs from the office to the lab and
back,

The total dcvclopmcnt time rcprcscntcd by all
nincly-two of lhcsc cxpcrimcnts (including the thirly
runs to the copier room) was approximate] y three
weeks. Of course, this dots not include the time
spent developing the conditional sequencing
infrastructure and primitive behaviors.

S. Conclusions and Future Work

Wc have prcscntcd further experimental
cvidcncc of the efficacy of conditional sequencing for
controlling real-world autonomous mobile robots in
indoor environments. Wc dcscribcd the results of
over ninety cxpcrimcntal runs in a variety of
situations using two different conditional sequencing
infrastructures. In all cases, robust effective
performance was achicvcd with very little
programming effort once the infrastructure was in
place.

Wc consider these rcsuhs preliminary despite
the large number of trials relative to other published
studied of this kind. Wc arc currently working on a
design for a rigorous cxpcrimcntal protocol for
comparing different conditional sequencing
approaches and other navigation algorithms.

Wc arc also working on extending this work in
two different directions. First, wc plan to
investigate the application of conditional sequencing
to outdoor navigation, Second, wc arc investigating
compilation techniques to allow conditional
sequencing to run on small processors such as those
available for planetary rovers. Some preliminary
work in this direction has already been done [Gat93].

Acknowledgements

This work was performed at lhc Jet Propulsion
Laboratory, California Institulc of Technology under
a contract with Lhc National Aeronautics and Space
Administration.

References

[Arkin90] Ronald C. Arkin, “Inlcgrating
Behavioral, Pcrccptual and World Knowledge
in Rcactivc Navigation,” Robotics and
Autonomous Systems, vol. 6, pp. 105-122,
1990,

[Bonasso92] R, Peter Bonasso, “Using Parallel
Program Specifications For Rcactivc Control
of Underwater Vchiclcs,” Journal of Applied
ln(clligcnce, Kluwcr Academic Publishers,
Norwcll , MA, June 1992.

[Brooks86] Rodney A, Brooks, “A Robust Layered
Control Systcm for a Mobile Robot”, IEEE
Journal on Robolics and Automation, vol
RA-2, no. 1, March 1986.

[Conncl191] Jonathan Conncll, “SSS: A Hybrid
Architccturc Applied to Robot Navigation,”
unpublished manuscript,

... ,

[Firby89] R. James Firby, AdupIive Execution in
Dynamic Domains, Ph,D, thesis, Yale
University Dcparlmcnl of Compa[cr Scicncc,
1989.

[Ga191b] Erann Gat, “ALFA: A Language for
Programming Rcactivc Robotic Conlrol
Systems’’,lEEE Conference on Robotics and
Automation, 1991,

[Gat9 ld] Erann Gat, “Low-compilation Scnsor-
drivcn Control for Task-dirccl.cd Navigation,”
IEEE Conference o n Robolics a n d
Automation,)991.

[Gat92] Erann Gat, “Intcgraling Rcaclion a n d
Planning in a Hclcrogcncous Asynchronous
Architccturc for Controlling Real World
Mobile Robots,” Proceedings of lhe Tenth
National Conference on Artificial Intelligence
(AAAI), 1992.

[Ga193] Erann Gal, ct al., “Behavior Control for
Planetary Exploration,” IEEE Transactions on
Robotics and Automation, to appear.

[Gcorgcff87] Michael Gcorgcff and Amy Lanskcy,
“Rcactivc Reasoning and Planning”,
Proceedings of AAAI-87.

[McDcrmott91] Drew McDcrnlolt, “A Rcactivc
Plan Language,” Technical Rcporl 864, Yale
University Dcparlmcnt of Computer Scicncc.

[Simmons90] Reid Simmons, “An Architcdurc for
Coordinating Planning, Sensing and Action,”
Proceedings of the DARPA Workshop on
Innovative Approaches to Planning,
Scheduling, and Control, 1990.

[Slcclc90] Guy Stcclc, Common Lisp: The
Language (second edition), Digital Press,
1990.

